s"intensifier - ορισμός. Τι είναι το s"intensifier
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

Τι (ποιος) είναι s"intensifier - ορισμός

IMAGE INTENSIFIER THAT CONVERTS X-RAYS INTO VISIBLE LIGHT AT HIGHER INTENSITY THAN THE MORE TRADITIONAL FLUORESCENT SCREENS CAN
XRII; X-ray imaging intensifier; X ray imaging intensifier; X ray image intensifier; C-Arm
  • C-arm of a mobile X-ray unit containing an image intensifier (top)
  • Schematic of an X-ray image intensifier

image intensifier         
  • Photons from a low-light source enter the objective lens (on the left) and strike the photocathode (gray plate). The photocathode (which is negatively biased) releases electrons which are accelerated to the higher-voltage microchannel plate (red). Each electron causes multiple electrons to be released from the microchannel plate. The electrons are drawn to the higher-voltage phosphor screen (green). Electrons that strike the phosphor screen cause the phosphor to produce photons of light viewable through the eyepiece lenses.
VACUUM TUBE DEVICE FOR INCREASING THE INTENSITY OF AVAILABLE LIGHT
Image intensifiers; Image intensification; Image intensifier tube; Image amplifier
¦ noun a device used to make a brighter version of an image on a photoelectric screen.
Image intensifier         
  • Photons from a low-light source enter the objective lens (on the left) and strike the photocathode (gray plate). The photocathode (which is negatively biased) releases electrons which are accelerated to the higher-voltage microchannel plate (red). Each electron causes multiple electrons to be released from the microchannel plate. The electrons are drawn to the higher-voltage phosphor screen (green). Electrons that strike the phosphor screen cause the phosphor to produce photons of light viewable through the eyepiece lenses.
VACUUM TUBE DEVICE FOR INCREASING THE INTENSITY OF AVAILABLE LIGHT
Image intensifiers; Image intensification; Image intensifier tube; Image amplifier
An image intensifier or image intensifier tube is a vacuum tube device for increasing the intensity of available light in an optical system to allow use under low-light conditions, such as at night, to facilitate visual imaging of low-light processes, such as fluorescence of materials in X-rays or gamma rays (X-ray image intensifier), or for conversion of non-visible light sources, such as near-infrared or short wave infrared to visible. They operate by converting photons of light into electrons, amplifying the electrons (usually with a microchannel plate), and then converting the amplified electrons back into photons for viewing.
X-ray image intensifier         
An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems (such as fluoroscopes) to allow low-intensity X-rays to be converted to a conveniently bright visible light output.

Βικιπαίδεια

X-ray image intensifier

An X-ray image intensifier (XRII) is an image intensifier that converts X-rays into visible light at higher intensity than the more traditional fluorescent screens can. Such intensifiers are used in X-ray imaging systems (such as fluoroscopes) to allow low-intensity X-rays to be converted to a conveniently bright visible light output. The device contains a low absorbency/scatter input window, typically aluminum, input fluorescent screen, photocathode, electron optics, output fluorescent screen and output window. These parts are all mounted in a high vacuum environment within glass or, more recently, metal/ceramic. By its intensifying effect, It allows the viewer to more easily see the structure of the object being imaged than fluorescent screens alone, whose images are dim. The XRII requires lower absorbed doses due to more efficient conversion of X-ray quanta to visible light. This device was originally introduced in 1948.